A Meta-learning Method for Concept Drift

نویسندگان

  • Runxin Wang
  • Lei Shi
  • Mícheál Ó Foghlú
  • Eric Robson
چکیده

The knowledge hidden in evolving data may change with time, this issue is known as concept drift. It often causes a learning system to decrease its prediction accuracy. Most existing techniques apply ensemble methods to improve learning performance on concept drift. In this paper, we propose a novel meta learning approach for this issue and develop a method: Multi-Step Learning (MSL). In our method, a MSL learner is structured in a recursive manner, which contains all the base learners maintained in a hierarchy, ensuring the learned concepts are traceable. We evaluated MSL and two ensemble techniques on three synthetic datasets, which contain a number of drastic concept drifts. The experimental results show that the proposed method generally performs better than the ensemble techniques in terms of prediction accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Tracking Recurring Concepts with Meta-learners

This work address data stream mining from dynamic environments where the distribution underlying the observations may change over time. In these contexts, learning algorithms must be equipped with change detection mechanisms. Several methods have been proposed able to detect and react to concept drift. When a drift is signaled, most of the approaches use a forgetting mechanism, by releasing the...

متن کامل

Concept drift detection in business process logs using deep learning

Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...

متن کامل

Learning from Data Streams with Concept Drift

Increasing access to incredibly large, nonstationary datasets and corresponding demands to analyse these data has led to the development of new online algorithms for performing machine learning on data streams. An important feature of real-world data streams is " concept drift, " whereby the distributions underlying the data can change arbitrarily over time. The presence of concept drift in a d...

متن کامل

Meta-Learning, Model Selection, and Example Selection in Machine Learning Domains with Concept Drift

For many tasks where data is collected over an extended period of time, its underlying distribution is likely to change. A typical example is information filtering, i.e. the adaptive classification of documents with respect to a particular user interest. The interest of the user may change over time. Machine learning approaches handling concept drift have been shown to outperform more static ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010